Logaritma - Definisi, Sifat, Teladan Soal Dan Pembahasan



Soal Terbaru.net - Logaritma, Definisi, Sifat-sifat, Contoh soal dan Pembahasan

Pada goresan pena ini aku akan membahas logaritma dari konsep dasar, termasuk definsi dan sifat-sifat logaritma lengkap dengan rujukan soal dan pembahasan. Materi mengenai logaritma ini dipelajari di kelas X pada matematika peminatan (untuk kurikulum 2013 revisi).

Informasi : Tulisan ini memuat abjad matematika dalam bentuk latex yang tidak responsive untuk media mobile. Jika ada abjad matematika yang terpotong, sebaiknya buka laman ini via PC/Laptop, atau via smartphone dengan posisi landscape.

Definisi Logaritma

Logaritma sangat bersahabat kaitannya dengan eksponen atau perpangkatan. Loritma merupakan invers (kebalikan) dari perpangkatan (eksponen). Biasanya logaritma kita gunakan untuk menuntaskan permasalahan suatu persamaan yang pangkatnya tidak diketahui. 

Pada bahan eksponen kita telah mengetahui bentuk $\displaystyle a^x=b$ merupakan suatu bilangan berpangkat dengan $a$ sebagai basis (bilangan pokok), $x$ sebagai pangkat (eksponen) dan $b$ merupakan hasil perpangkatan yang disebut numerus. 

Dalam bahan logaritma ini, yang akan kita cari ialah nilai pangkat atau eksponennya. Misalnya $2^x=32$, berapa nilai $x$ yang memenuhi? dengan gampang sanggup kita jawab $x=5$ alasannya $2^5=32$. Lalu bagaimana cara mencari nilai $x$ dari persamaan $3^x=7$? untuk mencari nilai $x$ dari persamaan tersebut kita akan kesulitan. Untuk menyatakan nilai $x$ dari persamaan tersebut kita memerlukan suatu "alat" atau operasi matematika yang disebut dengan logaritma. Logaritma ditemukan oleh seorang matematikawan asal skotlandia berjulukan John Napier. Untuk memahami lebih terang mengenai logaritma, perhatikan definisi logaritma sebagai berikut:

Definisi Logaritma

Jika $a\gt 0$, $a\ne 1$, dan $b\gt 0$ maka:



$\displaystyle a^x=b \Leftrightarrow x= ^a\!\log{b}$ 

$a$ disebut basis (bilangan pokok), $b$ disebut numerus, dan $x$ hasil logaritma (pangkat)

Sebagai catatan, pada beberapa buku atau karya tulis ilmiah tertutama yang berasal dari luar indonesia, penulisan letak basis logaritma sanggup berbeda yaitu $\log_a{b}$ dengan $a$ sebagai basis dan $b$ numerus. Untuk logaritma basis 10, maka basis tidak perlu ditulis, contohnya $^{10}\!\log 100$ cukup ditulis $\log 100$. Jika basis logaritma berupa konstanta euler $(e)$ maka penulisan logaritma $^e\! \log b=\ln b$ dengan $e\approx 2,7182818284\cdots$ disebut sebagai logaritma natural

Berdasarkan definisi di atas, kita sanggup mengubah bentuk perpangkatan ke dalam bentuk logaritma dan sebaliknya, kita pun sanggup mengubah bentuk logaritma ke dalam bentuk perpangkatan. Perhatikan rujukan berikut:

Contoh 1

Nyatakan bentuk perpangkatan berikut dalam bentuk logaritma!
1). $\displaystyle 5^3=125$
2). $\displaystyle 2^3=8$
3). $\displaystyle 5^x=7$
4). $\displaystyle a^b=c$
5). $\displaystyle 9^{\frac{1}{2}}=3$

Jawab


1). $\displaystyle 5^3=125\Leftrightarrow 3= ^5\!\log 125$
2). $\displaystyle 2^3=8\Leftrightarrow 3= ^2\!\log 8$
3). $\displaystyle 5^x=7 \Leftrightarrow x= ^5\!\log 7$
4). $\displaystyle a^b=c\Leftrightarrow b= ^a\!\log c$
5). $\displaystyle 9^{\frac{1}{2}}=3\Leftrightarrow\frac{1}{2}= ^9 \!\log 3$

Contoh 1

Nyatakan tiap persamaan logaritma berikut dalam bentuk perpangkatan!
1). $\displaystyle ^4\log 64=3$
2). $\displaystyle ^p\log q=r $

Jawab

1). $\displaystyle ^4\log 64=3\Leftrightarrow 64=4^3$
2). $\displaystyle ^p\log q=r \Leftrightarrow q=p^r$

Contoh 3

Tentukan nilai $x$ dari tiap persamaan berikut!
1). $\displaystyle ^3\log x=4$
2). $\displaystyle ^x\log 16=2$
3). $\displaystyle ^2\log 64=x$

Jawab


$\begin{align*}\text{1). } ^3\log x=4\Leftrightarrow x&=3^4\\x&=81\end{align*}$


$\begin{align*}\text{2). }^x\log 16 =2 \Leftrightarrow 16&=x^2\\x&=4\end{align*}$


$\begin{align*}\text{3). }^2\log 64=x\Leftrightarrow 64&=2^x\\2^6&=2^x\\x&=6\end{align*}$





Sifat-sifat Logaritma

Sifat-sifat logaritma sanggup dipakai untuk mengubah bentuk-bentuk suatu logaritma ke bentuk-bentuk yang diinginkan. Sifat-sifat tersebut sebagai berikut:


Sifat-sifat Logaritma

  $\displaystyle ^a\log 1=0$
  $\displaystyle ^a\log a=1$
  $\displaystyle ^a\log b^n=n\times ^a\log b$
  $\displaystyle {}^{a^m} \log b^n =\frac{n}{m}\times ^a\log b$
  $\displaystyle ^a\log bc=^a\log b+^a\log c$
  $\displaystyle ^a\log\frac{b}{c}=^a\log b-^a\log c$
  $\displaystyle ^a\log b=\frac{1}{^b\log a}$
  $\displaystyle ^a\!\log b .^b\!\log c .^c\!\log d=^a\!\log d$
  $\displaystyle \frac{^a\!\log b}{^a\!\log c}=^c\!\log b$
$\displaystyle a^{^a\!\log b}=b$


Perhatikan rujukan soal dan pembahasan berikut ini:

Contoh
Tentukan nilai dari $\displaystyle \frac{\log{5\sqrt{5}}+\log{\sqrt{3}}+\log 45}{\log {15}}$

 Jawab:
$\begin{align*}\displaystyle \frac{\log{5\sqrt{5}}+\log{\sqrt{3}}+\log 45}{\log {15}}&=\frac{\log{\left(5\sqrt{5}\times\sqrt{3}\times 45\right)}}{\log 15}\\&=\frac{\log{225\sqrt{15}}}{\log{15}}\\&=^{15}\log{225\sqrt{15}}\\&=^{15}\log 225 +^{15}\log \sqrt{15}\\&=^{15}\log{15^2}+^{15}\log{15^{\frac{1}{2}}}\\&=2+\frac{1}{2}\\&=\frac{5}{2}\end{align*}$

Soal Latihan:

Tentukan nilai dari $\displaystyle\frac{\left(^3\!\log 36\right)^2-\left(^3\!\log 4\right)^2}{^3\!\log\sqrt{12}}=$ ....



Jika ada bab yang terpotong, sebaiknya buka laman ini melalui laptop/PC atau melalui smartphone dalam mode landscape.

$\begin{align*}\frac{\left(^3\!\log 36\right)^2-\left(^3\!\log 4\right)^2}{^3\!\log \sqrt{12}}&=\frac{\left(^3\!\log 36+^3\!\log 4\right)\left(^3\!\log 36-^3\!\log 4\right)}{^3\!\log\sqrt{12}}\\&=\frac{\left(^3\!\log 144\right)\left(^3\!\log 9\right)}{^3\!\log\sqrt{12}}\\&=\frac{^3\!\log144}{^3\!\log\sqrt{12}}\times ^3\!\log 9\\&=^\sqrt{12}\!\log 144\times 2\\&=^{12^{\frac{1}{2}}}\log{12^2}\times 2\\&=4\times 2\\&=8\end{align*}$


Penerapan Logaritma

Konsep logaritma banyak diterapkan di banyak sekali cabang ilmu pengetahuan. Diantaranya:

Dalam fisika, salah satunya dipakai untuk memilih berpengaruh intensitas cahaya

Dalam bidang ekonomi, logaritma dipakai dalam perhitungan terkait kasus bunga majemuk

Dalam bidang kimia, salahsatunya dipakai dalam memilih derajat keasaman zat (pH)

Dalam bidang Biologi, dipakai dalam kasus pertumbuhan bakteri


Selain beberapa kasus di atas, masih banyak lagi disiplin ilmu lain yang memanfaatkan konsep logaritma. Untuk itu konsep ini sangat penting untuk kita pelajari.

Demikianlah pemaparan mengenai logaritma, mencakup definisi, sifat-sifat dan beberapa rujukan soal dilengkapi pembahasan. Semoga bermanfaat

Jika menginginkan goresan pena ini dalam format pdf, silakan download melelui tombol di bawah ini:


Related Posts

Post a Comment