Soal Dan Pembahasan Simak Ui 2017/2018 Matematika Ipa

Seleksi Masuk Universitas Indonesia sering dikenal dengan istilah SIMAK UI. Penyelenggara SIMAK UI hanyalah Universitas Indonesia yang tujuannya untuk merekrut penerimaan mahasiswa baru. Perlu diketahui bahwa bahan yang diujikan pada SIMAK UI adalah:
  • Kemampuan Dasar (KD) terdiri atas Bahasa Indonesia, Bahasa Inggris, dan Matematika Dasar.
  • Kemampuan IPA (KA) terdiri atas Biologi, Kimia, Fisika, Matematika IPA dan IPA Terpadu.
  • Kemampuan IPS (KS) terdiri atas Geografi, Ekonomi, Sejarah, dan IPS Terpadu.
Materi apa saja yang harus adik-adik pelajari??? Tentu hal ini tergantung dari prodi apa yang kalian pilih. Untuk jelasnya perhatikan berikut ini:
  • Jika adik-adik menentukan prodi IPA maka bahan yang harus kalian pelajari yaitu KD dan KA.
  • Jika adik-adik menentukan prodi IPS maka bahan yang harus kalian pelajari yaitu KD dan KS.
  • Jika adik-adik menentukan prodi IPC (IPA dan IPS) maka kalian tentu harus lebih ekstra mempelajari tiga kemampuan yaitu KD, KA, dan KS.
Baiklah, adik-adik alasannya yaitu ini seleksi tentu PERSIAPAN yaitu salah satu penentu kelulusan. Untuk itu silahkan perhatikan Soal dan Pembahasan Matematika IPA SIMAK UI Tahun 2017 berikut ini:

Matematika SIMAK UI 2017 No. 1
Jika bulat $x^2+y^2-2ax+b=0$ berjari-jari 2 menyinggung garis $x-y=0$. Maka jumlah kuadrat semua nilai $a$ yang mungkin yaitu ….
A. 2    B. 8    C. 12    D. 16    E. 18
Pembahasan:
Lingkaran $x^2 + y^2-2ax+b=0$ berjari-jari 2
$A = -2a, B = 0, C = b$
Titik sentra $\left( \frac{A}{-2}, \frac{B}{-2} \right)$ = (a, 0)
Panjang jari-jari bulat sama dengan jarak titik sentra (a, 0) ke garis singgung $x-y = 0$.
$\begin{align} \left| \frac{1.a-1.0}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| &=2 \\ \left| \frac{a}{\sqrt{2}} \right| & =2 \\ \left| a \right| & =2\sqrt{2} \\ a & =\pm 2\sqrt{2} \\ \end{align}$
$a_1=2\sqrt{2}$, atau ${{a}_{2}}=-2\sqrt{2}$
Jumlah kuadrat semua nilai $a$ yang mungkin adalah:
$\begin{align} a_1^2+a_2^2&=\left(2\sqrt{2}\right)^2+\left(-2\sqrt{2}\right)^2 \\ &=8 + 8\\ &=16 \end{align}$
Kunci: D

Matematika SIMAK UI 2017 No. 2
Jika $x_1$ dan $x_2$ yaitu akar-akar $2x^2-(2c-1)x-c^3+4=0$, maka nilai maksimum $x_{1}^{2}+x_{2}^{2}$ yaitu …
A. $-4\frac{3}{4}$    B. $-3\frac{3}{4}$    C. $-2\frac{3}{4}$    D. $2\frac{3}{4}$    E. $3\frac{3}{4}$
Pembahasan:
$2x^2-(2c-1)x-c^2+4=0$
$A=2$, $B=-2c+1$, $-c^3+4$
$x_1+x_2=\frac{-B}{A} = \frac{2c-1}{2}$
$x_1.x_2=\frac{C}{A} = \frac{4-c^3}{2}$
$\begin{align} x_1^2+x_2^2&=(x_1+x_2)^2-2x_1x_2 \\ &=\left( \frac{2c-1}{2} \right)^2-2.\frac{4-c^3}{2} \\ &=\frac{4c^2-4c+1}{4}-\frac{16-4c^3}{4} \\ &=\frac{4c^3+4c^2-4c-15}{4} \\ x_1^2+x_2^2&=c^3+c^2-c-\frac{15}{4} \end{align}$
$\frac{d}{dc}\left(x_1^2+x_2^2 \right) = 0$
$3c^2+2c-1=0$
$(3c-1)(c+1)=0$
$c=\frac{1}{3}$ atau $c=-1$
Uji turunan kedua:
$\frac{d^2}{dc^2}=6c+2$
$c=\frac{1}{3} \rightarrow \frac{d^2}{dc^2}=6.\frac{1}{3}+2 = 4 > 0$
maka diperoleh nilai minimum untuk $c=\frac{1}{3}$
$c=-1 \rightarrow \frac{d^2}{dc^2}=6.(-1)1+2 = -4 < 0$
maka diperoleh nilai maksimum untuk $c=-1$
$\begin{align} x_1^2+x_2^2 &=c^3+c^2-c-\frac{15}{4} \\ &= (-1)^3+(-1)^2-(-1)-\frac{15}{4} \\ &=-2\frac{3}{4} \end{align}$
Kunci: C

Matematika SIMAK UI 2017 No. 3
Jika $\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$, $\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$, dan $\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$, maka nilai $\frac{1}{23y-25x-18z}$ yaitu ….
A. $\frac{11}{12}$    B. $\frac{5}{7}$    C. $\frac{4}{9}$    D. $\frac{2}{7}$    E. $\frac{1}{6}$
Pembahasan:
$\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$ … persamaan (1)
$\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$… persamaan (2)
$\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$… pesamaan (3)
Persamaan (2) dikali dengan 2, kemudian kurangkan dengan persamaan (1):
$\frac{6}{x}-\frac{6}{y}-\frac{2}{z}=4$
$\frac{2}{x}-\frac{4}{y}+\frac{2}{z} = 1$
------------------- (+)
$\frac{8}{x}-\frac{10}{y}=5$ … persamaan (4)
Persamaan (2) dikali dengan 5, kemudian kurangkan dengan persamaan (3)
$\frac{15}{x}-\frac{15}{y}-\frac{5}{z}=10$
$\frac{4}{x}-\frac{2}{y}-\frac{5}{z}=6$
------------------- (-)
$\frac{11}{x}-\frac{13}{y}=4$ … persamaan (5)
Eliminasi x: persamaan (4) dikali dengan 11, persamaan (4) dikali dengan 8, kemudian kurangkan.
$\frac{88}{x}-\frac{110}{y}=55$
$\frac{88}{x}-\frac{104}{y}=32$
-------------------- (-)
$\frac{-6}{y}=23\leftrightarrow y=\frac{-6}{23}$
Substitusi ke persamaan (5)
$\frac{11}{x}-\frac{13}{y}=4\leftrightarrow \frac{11}{x}-\frac{13}{-6/23}=4$
$\leftrightarrow \frac{11}{x}-\frac{13}{-6/23}=4$
$\leftrightarrow x=\frac{66}{275}$
Substitusi ke persamaan (2)
$\frac{3}{x}-\frac{3}{y}-\frac{1}{z}=2$
$\frac{3}{-66/275}-\frac{3}{-6/23}-\frac{1}{z}=2$
$-\frac{275}{22}+\frac{23}{2}-\frac{1}{z}=2$
$-\frac{275}{22}+\frac{23}{2}-2=\frac{1}{z}$
$-\frac{275}{22}+\frac{253}{22}-\frac{44}{22}=\frac{1}{z}$
$-\frac{66}{22}=\frac{1}{z}$
$z=-\frac{1}{3}$
Maka nilai
$\frac{1}{23y-25x-18z}=\frac{1}{23.\frac{-6}{23}-25.\frac{-66}{275}-18.\frac{-1}{3}}$
$=\frac{1}{-6+6+6}$
$=\frac{1}{6}$
Kunci: E

Matematika SIMAK UI 2017 No. 4
Diketahui suku banyak $f(x+1)$ dibagi $x^2+2x$ memiliki sisa $2x-5$ dan $f(x-1)$ dibagi $x^2+x$ memiliki sisa $(x-9)$. Jika sisa pembagian $f(x)$ oleh $x^2+x-2$ yaitu $S(x)$, maka $S(4)$ = ….
A. $-6$    B. $-3$    C. 0    D. 3    E. 6
Pembahasan:
Yang dibagi = pembagi x hasil + sisa
$f(x+1)=(x^2+2x).hasil+2x-5$
$f(x+1)=x(x+2).hasil+2x-5$
$x=0$ maka:
$f(0+1)=0(0+2).hasil+2.0-5\to f(1)=-5$
$f(x-1)=(x^2+x).hasil+x-9$
$f(x-1)=x(x+1).hasil+x-9$
$x= -1$, maka:
$f(-1-1)=-1(-1+1).hasil+-1-9 \rightarrow f(-2) = -10$
$f(x)=(x^2+x-2).hasil+S(x)$; misalkan $S(x) = ax + b$
$f(x)=(x+2)(x-1).hasil+ax+b$
$f(1)=a+b=-5$
$f(-2)=-2a+b=-10$
------------------------- (-)
$3a=5$
$a=\frac{5}{3}$
$a+b=-5$
$\frac{5}{3}+b=-5\to b=-\frac{20}{3}$
$S(x)=ax+b$
$S(x)=\frac{5}{3}x-\frac{20}{3}$
$S(4)=\frac{5}{3}.4-\frac{20}{3}=0$
Kunci: C

Matematika SIMAK UI 2017 No. 5
Jika $f(x)=\frac{x+1}{2}$ dan $g(x)=\frac{2x-1}{3}$, maka nilai $x$ yang memenuhi $|f(x)-g(x)| < 1$ yaitu …
A. $1 \le x \le 11$
B. $x < 1$ atau $x > 11$
C. $x \le 1$ atau $x \ge 11$
D. $-1 < x < 11$
E. $-11 < x < 1$
Pembahasan:
$\left| \frac{x+1}{2}-\frac{2x-1}{3} \right| < 1$
$\left| \frac{3x+3}{6}-\frac{4x-2}{6} \right| < 1$
$\left| \frac{-x+5}{6} \right| < 1$
$\left| -x+5 \right| < 6$
$-6 < -x+5 < 6$
$ -11 < -x < 1$
$11 > x > -1$
$-1 < x < 11$
Kunci: D


Matematika SIMAK UI 2017 No. 6
Nilai $x$ yang memenuhi $(x-1)+{{(x-1)}^{3}}+{{(x-1)}^{5}}+...=1$ yaitu ….
A. $\frac{1+5\sqrt{3}}{2}$
B. $\frac{1+\sqrt{5}}{2}$
C. $\frac{1-5\sqrt{3}}{2}$
D. $\frac{1-3\sqrt{5}}{2}$
E. $\frac{1-\sqrt{5}}{2}$
Pembahasan:
$(x-1)+{{(x-1)}^{3}}+{{(x-1)}^{5}}+...=1$
Merupakan deret geometri tak hingga dengan $a=x-1$ dan $r=(x-1)^2$, dan memperhatikan jumlahnya sama dengan 1, maka $a > 0 \rightarrow x > 1$ maka:
${{S}_{\infty }}=\frac{a}{1-r}$
$1=\frac{x-1}{1-{{(x-1)}^{2}}}$
$1=\frac{x-1}{1-{{x}^{2}}+2x-1}$
$-{{x}^{2}}+2x=x-1$
${{x}^{2}}-x-1$
$x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$
$x=\frac{1+\sqrt{{{(-1)}^{2}}-4.1.(-1)}}{2.1}$
$x=\frac{1+\sqrt{5}}{2}$
Kunci: B

Matematika SIMAK UI 2017 No. 7
Jika $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ dengan $0\le x \le \frac{\pi}{2}$, maka $sin \ 2x$ = …
A. $\frac{4}{5}$    B. $\frac{3}{5}$    C. $\frac{2}{5}$    D. $\frac{1}{5}$    E. 0
Pembahasan:
$sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$
$2\sin \ x.\cos x+2{{\cos }^{2}}x-1$ = $-16\cos x+8\sin x+{{\cos }^{2}}x$
$2\sin \ x.\cos x+16\cos x+{{\cos }^{2}}x-1-8\sin x=0$
$2\cos x(\sin \ x+8)-{{\sin }^{2}}x-8\sin x=0$
$2\cos x(\sin \ x+8)-\sin x(\sin x+8)=0$
$(2\cos x-\sin x)(\sin \ x+8)=0$
$2\cos x-\sin x=0$
$\sin x=2\cos x$
$\frac{\sin x}{\cos x}=2$
$\tan x=\frac{2}{1}=\frac{de}{sa}$ maka $mi=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5}$
$\sin x=\frac{de}{mi}=\frac{2}{\sqrt{5}}$  dan $\cos x=\frac{sa}{mi}=\frac{1}{\sqrt{5}}$
$sin\ 2x=2\sin x.\cos x$
$sin\ 2x=2.\frac{2}{\sqrt{5}}.\frac{1}{\sqrt{5}}=\frac{4}{5}$
Kunci: A

Matematika SIMAK UI 2017 No. 8 
$\lim_{x\to \frac{\pi }{2}}\frac{\sec 2x+2}{\tan 2x}$ = …
A. $-2$    B. $-1$    C. $-\frac{1}{2}$    D. 0    E. 1
Pembahasan:
Misal: $y=x-\frac{\pi }{2}\leftrightarrow x=y+\frac{\pi }{2}$
Jika $x\to \frac{\pi }{2}$ maka $y\to 0$
$\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\sec 2x+2}{\tan 2x}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{\sec 2\left( y+\frac{\pi }{2} \right)+2}{\tan 2\left( y+\frac{\pi }{2} \right)}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\sec 2y+2}{\tan 2y}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\frac{1}{\cos 2y}+2}{\frac{\sin 2y}{\cos 2y}}$
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-1+2\cos 2y}{\sin 2y}$
Dengan teorema L’Hospital
$=\underset{y\to 0}{\mathop{\lim }}\,\frac{-4\sin 2y}{2\cos 2y}$
$=\underset{y\to 0}{\mathop{\lim }}\,-2\tan 2y$
$=-2.\tan (2.0)$
$=0$
Kunci: D

Matematika SIMAK UI 2017 No. 9
$6\int\limits_{0}^{1}{(\cos \pi x+{{x}^{2}}-3x+2)dx}$ = $(a-1)(a-5)$, maka nilai $a$ yaitu …
A. $-2$ atau $-3$
B. 0 atau $-6$
C. 2 atau $-2$
D. 0 atau 6
E. 2 atau 3
Pembahasan:
$6\int\limits_{0}^{1}{(\cos \pi x+{{x}^{2}}-3x+2)dx}=(a-1)(a-5)$
$\left. 6\left( \frac{1}{\pi }\sin \pi x+\frac{1}{3}{{x}^{3}}-\frac{3}{2}{{x}^{2}}+2x \right) \right|_{0}^{1}=(a-1)(a-5)$
$6\left( 0+\frac{1}{3}-\frac{3}{2}+2 \right)-0={{a}^{2}}-5a-a+5$
$2-9+12={{a}^{2}}-5a-a+5$
${{a}^{2}}-6a=0$
$a(a-6)=0$
$a=0$ atau $a=6$
Kunci: D

Matematika SIMAK UI 2017 No. 10
Diberikan kubus ABCD.EFGH dengan panjang rusuk $5a$. Sebuah titik P terletak pada rusuk CG sehingga CP : PG = 2 : 3. Bidang PBD membagi kubus menjadi dua bab dengan perbandingan volume ….
A. 1:14    B. 1:13    C. 1:12    D. 1:11    E. 1:10
Pembahasan:
Perhatikan gambar berikut:
 Seleksi Masuk Universitas Indonesia sering dikenal dengan istilah  Soal dan Pembahasan SIMAK UI 2017/2018 Matematika IPA
$V_1$ = Volume P.BCD
$=\frac{1}{3}.\frac{BC.CD}{2}.PC$
$=\frac{1}{3}.\frac{5a.5a}{2}.2a$
$=\frac{25a^3}{3}$
Volume Kubus = $5a.5a.5a = 125a^3$
$V_2$ = Volume EFGH.ABPD
$= Volume \ Kubus - V_1$
$=125a^3-\frac{25a^3}{3}$
$V_2=\frac{350a^3}{3}$
$V_1:V_2=\frac{25a^3}{3}:\frac{350a^3}{3}$
$V_1:V_2=1:14$
Kunci: A


Matematika SIMAK UI 2017 No. 11
Diberikan kubus ABCD.EFGH dengan panjang rusuk 8. Di dalam kubus tersebut terdapat sebuah limas segiempat beraturan P.ABCD dengan tinggi $a$. Jika JIka titik Q terletak pada rusuk FG sehingga QG = FQ dan jarak antara titik Q ke bidang PCD yaitu 4, maka nilai $a$ yaitu ….
A. 3    B. 4    C. 5    D. 6    E. 7
Pembahasan:

Matematika SIMAK UI 2017 No. 12
Jika $f(x) = \frac{1}{3}x^3-2x^2+3x$ dengan $-1 \le x \le 2$ memiliki nilai maksimum di $(a, b)$, maka nilai $\int\limits_{a}^{b}{f'(x)dx}$ yaitu …
A. $\frac{16}{81}$    B. $\frac{15}{81}$    C. $\frac{12}{81}$    D. $\frac{9}{81}$    E. $\frac{8}{81}$
Pembahasan:
$f(x) = \frac{1}{3}x^3-2x^2+3x$
$f'(x)=0$
$f'(x)={{x}^{2}}-4x+3=0$
$(x-3)(x-1)=0$
$x=3$ atau $x=1$, nilai maksimum pada interval $-1 \le x \le 2$
Uji nilai x = $-1$, 1, dan 2
$f(-1)=\frac{1}{3}{{(-1)}^{3}}-2{{(-1)}^{2}}+3(-1)=-\frac{16}{3}$
$f(1)=\frac{1}{3}{{(1)}^{3}}-{{2.1}^{2}}+3.1=\frac{4}{3}$
$f(2)=\frac{1}{3}{{.2}^{3}}-{{2.2}^{2}}+3.2=\frac{2}{3}$
nilai maksimum di titik $\left( 1,\frac{4}{3} \right)=\left( a,b \right)$
$\int\limits_{a}^{b}{{f}'(x)dx}=\left. f(x) \right|_{a}^{b}$
$=\left. \frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x \right|_{1}^{\frac{4}{3}}$
$=\left[ \frac{1}{3}{{\left( \frac{4}{3} \right)}^{3}}-2{{\left( \frac{4}{3} \right)}^{2}}+3\left( \frac{4}{3} \right) \right]-\frac{4}{3}$
$=\frac{64}{81}-\frac{32}{9}+\frac{12}{3}-\frac{4}{3}$
$=-\frac{8}{81}$
Kunci: Tidak ada opsi yang memenuhi.

Gunakan petunjuk C dalam mengerjakan soal nomor 13 hingga nomor 15

Matematika SIMAK UI 2017 No. 13
Diketahui vector $\overrightarrow{a}=(1,1,p)$, $\overrightarrow{b}=(-2,n,-3)$, $\overrightarrow{c}=(m,4n,4)$, dan $\overrightarrow{d}=(2m,4-p,8)$. Jika $\overrightarrow{a}$ tegak lurus dengan $\overrightarrow{b}$ dan $\overrightarrow{c}$, sejajar dengan $\overrightarrow{d}$, maka ….
(1) $2n-6p=4$
(2) $m$ sembarang bilangan real
(3) $n+p=\frac{2}{25}$
(4) $n=\frac{13}{25}$
Pembahasan:
$\overrightarrow{a}\bot \overrightarrow{b}$ maka:
$\vec{a}.\vec{b}=0$
$(1,1,p).(-2,n-3)=0$
$-2+n-3p=0$
$n-3p=2$ } kali 2
$2n-6p=4$ maka (1) benar
$\overrightarrow{a}\bot \overrightarrow{b}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\vec{b}\bot \overrightarrow{d}$
$\vec{b}.\overrightarrow{d}=0$
$(-2,n,-3)(2m,4-p,8)=0$
$-4m+4n-np-24=0$
$4n-np=4m+24$
$\vec{a}\bot \overrightarrow{c}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\overrightarrow{c}\bot \overrightarrow{d}$
$\overrightarrow{c}.\overrightarrow{d}=0$
$(m,4n,4)(2m,4-p,8)=0$
$2{{m}^{2}}+16n-4np+32=0$
$2{{m}^{2}}+4(4n-np)+32=0$
$2{{m}^{2}}+4(4m+24)+32=0$
${{m}^{2}}+8m+80=0$
Uji diskriminan:
$D={{b}^{2}}-4ac$
$={{8}^{2}}-4.1.80$
$=-256 < 0$
Maka nilai m imaginer. Kaprikornus (2) salah.
Nah yang lain tidak perlu kita cek, maka opsinya yaitu B.
Kunci: B

Matematika SIMAK UI 2017 No. 14
Jika $\sin \ 10^o = a$, maka …
(1) $\frac{1}{sin \ 10^o}-4 \ sin \ 70^o = 2$
(2) $\frac{1}{sin \ 10^o}+4 \ sin \ 70^o = 2a$
(3) $\frac{1}{sin \ 10^o}-8 \ sin \ 70^o = 4-\frac{1}{a}$
(4) $\frac{1}{sin \ 10^o}-16 \ sin \ 70^o = 8-\frac{1}{a}$
Pembahasan:

Matematika SIMAK UI 2017 No. 15
Jika $f(x) = sin \ 3x + x^3+4x^2+5x$, maka …
(1) $f'(0).f''(0)=64$
(2) $\frac{f''(0)}{f'(0)}=1$
(3) $\frac{f'''(0)}{f''(0)}=\frac{-21}{8}$
(4) $f'''(0)-f''(0)+f'(0)=15$
Pembahasan:
$f(x) = sin \ 3x + x^3+4x^2+5x$
$f'(x)=3\cos \ 3x+3{{x}^{2}}+8x+5$
$f'(0)=3\cos \ (3.0)+{{3.0}^{2}}+8.0+5=8$
$f''(x)=-9\sin 3x+6x+8$
$f''(x)=-9\sin (3.0)+6.0+8=8$
$f'''(x)=-27\cos 3x+6$
$f'''(x)=-27\cos (3.0)+6=-21$
(1) ${f}'(0).{f}''(0)=8.8=64$ benar
(2) $\frac{f''(0)}{f'(0)}=\frac{8}{8}=1$ benar.
(3) $\frac{f'''(0)}{f''(0)}=\frac{-21}{8}$, benar
(4) ${f}'''(0)-{f}''(0)+{f}'(0)=-21-8+8=-21\ne 15$, salah
Karena (1), (2), dan (3) benar, sedangkan (4) salah maka opsi A.
Kunci: A

Related Posts

Post a Comment